The Endocrine System – The Adrenal Glands

The adrenal glands are small triangular-shaped structures located at the top of both kidneys. Their function is to produce hormones that help in the regulation of the metabolism, immune system, blood pressure, stress response, and more.

adrenal glands
Retrieved from https://www.jaypeedigital.com/book/9789350903025/chapter/ch16 on 12th March 2022

The adrenal glands, which are covered by an inner thick layer of connective tissue with an outer thin fibrous capsule, contain two sections:

  1. OUTER ADRENAL CORTEX – makes up the biggest part of the gland
  2. INNER ADRENAL MEDULLA – the core

The OUTER ADRENAL CORTEX is made up of 3 parts:

  1. Zona Glomerulosa – makes up 15% of the total volume (secretes mineralocorticoids)
  2. Zona Fasciculata – makes up the widest part of the total volume (mainly secretes glucocorticoids)
  3. Zona Reticularis – secretes amounts of hormones, mostly gonadocorticoids and androgens
adrenal glands
Retrieved from https://www.majordifferences.com/2014/04/difference-between-adrenal-cortex-and.html on 12th March 2022

Adrenal Cortex vs Adrenal Medulla

Mineralocorticoids

Mineralocorticoids are responsible for water and electrolyte homeostasis through control of sodium and potassium concentrations. 95% of all mineralocorticoid activity happens through Aldosterone:

  1. Aldosterone acts on the kidneys’ tubule cells, causing them to increase sodium reabsorption
  2. Sodium ions are removed from the urine and returned to the blood
  3. Rapid depletion of sodium from the body is prevented

Aldosterone causes:

  • potassium excretion
  • sodium reabsorption
  • hydrogen ions elimination
  • sodium, chloride, and bicarbonate ions retention
  • water retention

NOTE: Aldosterone reduces potassium reabsorption, thus, large potassium amounts are lost in urine excretion.

Electrolyte balance Secondary Effects

Sodium retention and potassium excretion lead to secondary effects:

  • Sodium reabsorption causes Hydrogen ions to pass into the urine to replace positive sodium ions, making the blood less acidic, thus preventing acidosis.
  • Sodium ions movement creates a positively charged field in the blood vessels surrounding the kidney tubules. This causes Chloride and Bicarbonate ions to move out from urine, back into the blood.
  • When ADH (antidiuretic hormone) is present, increased sodium concentration in the blood vessels causes water to move by osmosis from the urine into the blood.

Aldosterone control #1 – the raas system

RAAS system
Retrieved from https://www.pinterest.com/pin/557813103821299549/ on 13th March 2022

Aldosterone Control #2 – Potassium Ion Concentration

  1. Increased potassium concentration in extracellular fluid causes the adrenal cortex to secrete aldosterone
  2. Aldosterone secretion causes excess potassium to be eliminated by the kidneys
  3. Decreased potassium concentration in the extracellular fluid causes a decrease in aldosterone production, leading to less potassium excretion by the kidneys

Glucocorticoids

Glucocorticoids promote normal metabolism by:

  • increasing the rate of protein catabolism
  • increasing the rate at which amino acids are removed from cells and transported to the liver to undergo protein synthesis
  • releasing fatty acids from adipose tissue to be converted into glucose
  • promoting gluconeogenesis

Glucocorticoids promote stress resistance:

  • gluconeogenesis from amino acids causes a sudden increase in glucose availability, prompting the body to become more alert
  • blood vessels become more sensitive to chemicals that cause vasoconstriction so as to allow an increase in blood pressure

Glucocorticoids are anti-inflammatory compounds:

  • cause a reduction in mast cells
  • stabilise lyosomal membranes, leading to the inhibition of histamine release
  • decrease blood capillary permeability
  • depress phagocytosis by monocytes

Glucocorticoids:

  • Cortisol (hydrocortisone) – most abundant and responsible for about 95% of all glucocorticoid activity
  • Corticosterone
  • Cortisone

NOTE: Cortisol Serum blood test indicates adrenal function.

NOTE: Glucocorticoids slow down connective tissue regeneration, which leads to slow wound healing.

NOTE: Steroids are a synthetic form of glucocorticoids.

ACTH (Adrenocorticotropic hormone) Control

Glucocorticoid secretion is controlled through a negative feedback mechanism stimulated by stress and low blood glucocorticoid level:

  1. stress and low blood glucocorticoid level stimulate the hypothalamus to secrete CRF (corticotropin releasing factor)
  2. CRF secretion causes ACTH to be released from the anterior lobe of the pituitary
  3. ACTH is carried to the adrenal cortex, where it stimulates glucocorticoid secretion
adrenal glands
Retrieved from https://quizlet.com/279451837/chapter-9-vocabulary-flash-cards/ on 13th March 2022

Gonadocorticoids

The adrenal cortex is responsible for the secretion of both male and female sex hormones – oestrogens and androgens.

Adrenal Medulla

  • The adrenal medulla is made up of chromaffin cells (hormone-producing cells) surrounding sinuses containing blood
  • These chromaffin cells are considered to be postganglionic cells specialised in secretion
  • Preganglionic fibres pass directly into the chromaffin cells of the gland within the adrenal medulla
  • Secretion of hormones is controlled by the autonomic nervous system and innervation by preganglionic fibres that allows rapid response to a stimulus by the gland

Epinephrine and Norepinephrine

The adrenal medulla synthesises the following two hormones:

  • Epinephrine (adrenaline)
  • Norepinephrine (noradrenaline)

Epinephrine is stronger than norepinephrine. It:

  • increases the blood pressure by increasing the heart rate and constricting the blood vessels
  • increases respiration rate
  • dilates respiratory passageways
  • decreases digestion rate
  • increases muscular contraction efficiency
  • increases blood sugar level
  • stimulates cellular metabolism

However, both epinephrine and norepinephrine:

  • mimic the sympathetic nervous system – they are sympathomimetic
  • help in stress resistance

Did you find the above nursing information useful? Follow us on Facebook and fill in your email address below to receive new blogposts in your inbox as soon as they’re published 🙂

Renal Physiology – Glomerular Filtration, Tubular Reabsorption & Secretion

Renal physiology is the study of the physiology of the kidney, specifically at the level of the nephron, which is the smallest functional unit of the kidney where blood entering the kidney goes through the process of filtration.

Overview of Renal Physiology

3 Important Functions of the Nephrons:

  • control blood concentration and volume through selected removal of water and solutes
  • regulate blood pH
  • remove toxic waste from the blood

Through these functions, materials from the blood is removed, others which are required are returned, and the remaining unneeded material is excreted collectively as urine. In other words, urine formation requires Glomerular Filtration, Tubular Reabsorption and Tubular Secretion.

Renal Physiology – Glomerular Filtration

Glomerular Filtration occurs in the renal corpuscle of the kidneys across the endohelial-capsular membrane, which results in the fluid called glomerular filtrate ( 150 lt in adult females; 180 lt in adult males). The blood plasma in the afferent arterioles which become the glomerular filtrate is called the filtration fraction.

renal physiology
Retrieved from https://slidetodoc.com/renal-functions-gfr-learning-objectives-enumerate-general-functions/ on 5th December 2021
renal physiology
Retrieved from https://slideplayer.com/slide/10629513/36/images/34/Glomerular+Filtration.jpg on 15th December 2021

Understanding the Glomerular Filtration Process

Pressures Causing Filtration & GFR Regulation

The Glomerular Filtration Rate (GFR) is the amount of filtrate formed in all the renal corpuscles of both kidneys per minute (rate in males = 125ml/min; rate in females = 105ml/min). Maintenance of a constant GFR ensures that useful substances are not lost.

A change in GFR indicates a change in the net filtration pressure – if the glomerular blood hydrostatic pressure (GBHP) falls to 45mmHg, the filtration process is halted as the opposing pressures equal to 45mmHg.

There are 3 mechanisms which control GFR by adjusting the blood flow into and out of the glomerulus, and by altering the glomerular capillary surface area for the process of filtration:

  1. Renal Autoregulation: Through the Myogenic Mechanism, stretching triggers contraction of smooth muscle cells in the afferent arteriole wall, causing normalisation of the renal blood flow and GFR within seconds following a change in blood pressure. Additionally, through the Tubuloglomerular Feedback, increased distal tubular sodium chloride concentration causes the release of adenosine, leading to a series of events that help regulate the GFR.
  2. Neural Regulation: The Sympathetic Nervous System, which supplies the renal blood vessels, is responsible for the release of norepinephrine. Through Moderate Sympathetic Stimulation, norepinephrine activates the a1 (alpha-1 adrenergic) receptor in the afferent and efferent arterioles, causing vasoconstriction, causing blood flow restriction, leading to a slight GFR decrease. In Greater Sympathetic Stimulation, vasoconstriction of the afferent arterioles predominates; blood flow in the glomerular capillaries is decreased, leading to a decrease in GFR.
  3. Hormonal Regulation: Angiotensin II, which is a vasoconstrictor, acts on the afferent and the efferent arterioles, reducing blood flow leading to a decrease in the GFR. Additionally, Atrial Natriuretic Peptide (ANP) is released through the stretching of the atrial walls when there is an increase in blood volume, leading to an increase in capillary surface area, causing an increase in the GFR.

Renal Physiology – Tubular Reabsorption

In the average adult, the Glomerular Filtration Rate (GFR) is approximately 125ml/min, meaning that around 180 litres are filtered in one day. However, only around 1ltr a day is excreted as urine by the body. This happens because throughout the filtration process, around 99% of the filtrate is reabsorbed back into the blood in what is called tubular reabsorption.

In tubular reabsorption, the proximal convoluted tubule cells process and reabsorb over 80% of the glomerular filtrate, whilst other parts of the nephron ensure homeostasis by controlling excretion amounts of electrolytes, water and hydrogen ions. Through tubular reabsorption, the following are reabsorbed back into the blood stream:

  • Sodium
  • Potassium
  • Calcium
  • Chloride
  • Bicarbonate
  • Phosphate

Peptides and small proteins are also reabsorbed through pinocytosis.

Substances completely reabsorbed from the filtrate are:

  • Water
  • Proteins
  • Chloride
  • Sodium
  • Bicarbonate
  • Glucose
  • Potassium

Urea and Uric Acid are partially reabsorbed from the filtrate.

renal physiology
Retrieved from https://baujiti.home.blog/2013/09/25/urine-formation-form-iii/ on 5th December 2021

Renal Physiology – Tubular Secretion

Tubular Secretion, which occurs in the proximal and distal tubules as well as in the collecting dugt, removes certain materials from the body such as Potassium ions, Hydrogen ions, Ammonium ions, Creatinine, and drugs.; it also helps control the blood’s pH.

Renin-Angiotensin-aldosterone System (RAAS)

RAAS
Retrieved from https://step1.medbullets.com/renal/115016/renin-angiotensin-aldosterone-system on 15th December 2021

Aldosterone causes increased sodium and water reabsorption from the distal tubule and collecting ducts, leading to an increase in the extracellular fluid volume. This allows the restoration of the blood pressure to its normal state. Additionally, Aldosterone has an affect on the secretion of potassium by the distal convoluted tubule and collecting duct.

Antidiuretic Hormone

The AntiDiuretic Hormone, which is produced by the hypothalamus, controls the concentration of the urine to be excreted.

When the blood-water concentration is low, ADH is released, which increases the permeability of the plasma membranes of the cells of the distal tubules and the collecting ducts. Increased permeability causes more water molecules to pass into the cells, and then into the blood.

With no ADH, the ducts become impermeable to water, causing water to be expelled into urine.

Atrial Natriuretic Peptide

Increased blood volume causes the atrial walls to stretch, leading to the release of the Atrial Natriuretic Peptide (ANP). ANP inhibits the reabsorption of sodium and water in the proximal convoluted tubule and collecting duct, suppresses the secretion of aldosterone, and suppresses the secretion of ADH. This results in increased excretion of sodium ions (natriuresis) and increased urine output (diuresis), leading to a decrease in the blood volume and blood pressure.

Note…

Tubular Reabsorption REMOVES substances from the filtrate into the blood… Tubular Secretion ADDS materials to the filtrate from the blood.

Renal Physiology – Solute Reabsorption

Solute Reabsorption happens within the ascending limb of the loop of henle.

Summary…

Retrieved from https://www.researchgate.net/figure/Nephron-segments-and-their-main-physiological-function-The-nephron-is-the-functional_fig1_321907177 on 15th December 2021

Did you find the above nursing information useful? Follow us on Facebook and fill in your email address below to receive new blogposts in your inbox as soon as they’re published 🙂